Polski model AI analizuje zdjęcia klatki piersiowej

Opublikowano: 25.03.2025 | Kategorie: Nauka i technika, Telekomunikacja i komputery, Wiadomości z kraju

Liczba wyświetleń: 647

Specjaliści z Politechniki Warszawskiej we współpracy z Polską Grupą Raka Płuca opracowali model sztucznej inteligencji oparty na największej na świecie bazie zdjęć klatki piersiowej. Będzie on wspierał lekarzy w diagnozowaniu chorób w obrębie klatki piersiowej.

„System jest tak zaprojektowany, by wspierać lekarza przy najbardziej żmudnych czynnościach i dać mu więcej czasu na analizę istotnych diagnostycznie cech” – twierdzi Przemysław Biecek, kierownik projektu i lider zespołu badawczego MI2.AI, zajmującego się przetwarzaniem danych i uczeniem maszynowym.

Jak wyjaśnia specjalista w informacji przekazanej PAP, szukając podobnych obrazów, system – opracowany w ramach projektu Xlungs – może szybko przejrzeć tysiące referencyjnych badań tomografii komputerowej, w każdym badaniu błyskawicznie analizuje setki zdjęć, by precyzyjnie oznaczyć zmiany chorobowe oraz istotne cechy anatomiczne.

„Cechy anatomiczne zmierzone przez system mogą być zintegrowane z innymi procesami diagnostycznymi. Podobnie jak badanie krwi jest podstawą diagnozowania licznych chorób – tak precyzyjne, szybkie i tanie wymiarowanie zmian w klatce piersiowej może być przełomem w screeningu” – uważa lider zespołu MI2.AI. Dodaje, że narzędzie to można zintegrować z już wykorzystywanymi w leczeniu systemami, gdyż współpracuje z powszechnie przyjętymi standardami dokumentacji medycznej.

W systemie wykorzystano ogromną liczbę obrazów tomografii komputerowej płuc – aż 40 tysięcy, opracowanych przez zespół badawczy MI².AI z Politechniki Warszawskiej we współpracy w Polską Grupą Raka Płuca. Były to płyty CD z tomografii komputerowej polskich pacjentów z lat 2010-2018, m.in. z badań przesiewowych w kierunku raka płuca. Dzięki temu powstał model sztucznej inteligencji oparty na największej tego typu bazie danych na świecie (zawierający 40 terabajtów danych). Ma on wspierać lekarzy w szybszym i skuteczniejszym diagnozowaniu chorób. Ale podobnych zasobów może być w Polsce dużo więcej.

Każdego roku w Polsce wykonuje się kilkaset milionów badań laboratoryjnych, z czego ponad 60 mln przypada na badania obrazowe, takie jak m.in. tomografia komputerowa (TK). Według raportu Collective Minds Radiology w trakcie jednego badania TK powstaje od 200 MB do 1 GB danych. Średniej wielkości szpital generuje od kilkudziesięciu terabajtów (1 TB = 1024 GB) do kilku petabajtów (1 PB = 1024 TB) danych rocznie w postaci skanów obrazowych, wyników laboratoryjnych i dokumentacji medycznej.

W Polsce od ponad dekady budowana jest elektroniczna dokumentacja medyczna (EDM) – zintegrowany system gromadzący dane zdrowotne pacjenta. Od 1 lipca 2021 r. każdy lekarz czy gabinet ma obowiązek raportowania w nim zdarzeń medycznych. Jednak już wcześniej wiele placówek medycznych gromadziło takie dane na własną rękę.

„Często mamy do czynienia z sytuacją, kiedy leczenie pacjenta dobiegło już końca, a wyniki jego badań nadal są w bazie szpitala czy kliniki i metaforycznie »kurzą się« na półkach” – tłumaczy Marcin Luckner, kierownik prac prowadzonych w ramach w projektu Xlungs. „Jednak nawet jeśli dla danego przypadku zachorowania zebrane dane nie mają już zastosowania, to zestawienie ich z wynikami innych osób zmagających się z tą samą dolegliwością może pozwolić lekarzom dostrzec pewne wzory i prawidłowości w rozwoju choroby i w przyszłości usprawnić jej leczenie. Taka analiza setek czy tysięcy wyników badań jest bardzo żmudnym i czasochłonnym działaniem, ale mogą nas w tym wesprzeć algorytmy sztucznej inteligencji” – przekonuje.

Według naukowców z Politechniki Warszawskiej w Polsce co roku przybywa kilkanaście tysięcy absolwentów informatyki i co roku wystawia się pół miliarda e-recept. Uważają oni, że mamy zatem spore szanse stać się potentatem w tworzeniu technologii medycznych wspieranych AI. „Polskie dane pozwalają lepiej wspierać lokalną diagnostykę, niż dane pozyskane np. z Chin. Równocześnie ich rozmiar daje potencjał do tworzenia rozwiązań na światowym poziomie” – zaznacza specjaliści PW.

Model sztucznej inteligencji CTSegMate opracowany w ramach projektu Xlungs wydobywa kluczowe informacje z historycznych obrazów CT, automatyzuje proces opisywania wyników i skraca czas ich analizy. Zespół MI².AI pracował nad jego stworzeniem przez trzy lata, a zaangażowane do tego zadania procesory potrzebowały ponad 180 000 godzin obliczeń. Realizacja takiego projektu była możliwa dzięki finansowaniu przez Narodowe Centrum Badań i Rozwoju w ramach konkursu INFOSTRATEG I.

MI².AI tworzą pracownicy naukowi i studenci dwóch wydziałów matematyki i informatyki w Polsce: MIM Uniwersytetu Warszawskiego i MiNI Politechniki Warszawskiej. Zajmuje się on prowadzeniem badań naukowych z dziedziny sztucznej inteligencji jak również praktycznym zastosowaniem ich efektów oraz popularyzacją wiedzy z obszaru swojej ekspertyzy.

Autorstwo: PAP
Źródło: NaukawPolsce.pl

image_pdfimage_print

TAGI: ,

Poznaj plan rządu!

OD ADMINISTRATORA PORTALU

Hej! Cieszę się, że odwiedziłeś naszą stronę! Naprawdę! Jeśli zależy Ci na dalszym rozpowszechnianiu niezależnych informacji, ujawnianiu tego co przemilczane, niewygodne lub ukrywane, możesz dołożyć swoją cegiełkę i wesprzeć "Wolne Media" finansowo. Darowizna jest też pewną formą „pozytywnej energii” – podziękowaniem za wiedzę, którą tutaj zdobywasz. Media obywatelskie, jak nasz portal, nie mają dochodów z prenumerat ani nie są sponsorowane przez bogate korporacje by realizowały ich ukryte cele. Musimy radzić sobie sami. Jak możesz pomóc? Dowiesz się TUTAJ. Z góry dziękuję za wsparcie i nieobojętność!

Poglądy wyrażane przez autorów i komentujących użytkowników są ich prywatnymi poglądami i nie muszą odzwierciedlać poglądów administracji "Wolnych Mediów". Jeżeli materiał narusza Twoje prawa autorskie, przeczytaj informacje dostępne tutaj, a następnie (jeśli wciąż tak uważasz) skontaktuj się z nami! Jeśli artykuł lub komentarz łamie prawo lub regulamin, powiadom nas o tym formularzem kontaktowym.

Dodaj komentarz

Zaloguj się aby dodać komentarz.
Jeśli już się logowałeś - odśwież stronę.