Modulacja czasu pozwala propagować dźwięk w jedną stronę

Opublikowano: 21.07.2020 | Kategorie: Nauka i technika, Wiadomości ze świata

Liczba wyświetleń: 110

Przełom na gruncie inżynierii i fizyki ogłosili naukowcy z CUNY ASRC i Georgia Tech. Jako pierwsi w historii zaprezentowali bowiem porządek topologiczny bazujący na modulacjach czasu. Osiągnięcie to pozwala na propagację fal dźwiękowych wzdłuż granic metamateriałów topologicznych bez ryzyka, że fale wrócą czy też zaczną propagować się poprzecznie z powodu niedoskonałości materiału.

Topologia zajmuje się badaniem właściwości, które nie ulegają zmianie nawet po zdeformowaniu obiektów. W izolatorze topologicznym prąd płynie wzdłuż granic obiektu, a na przepływ ten nie mają wpływu niedoskonałości struktury obiektu. W ostatnich latach dzięki postępom na polu metamateriałów udało się w podobny sposób kontrolować rozprzestrzenianie się światła i dźwięku.

Andrea Alu z CUNY ASRC i profesor Alexander Khanikaev z City College of New York wykorzystali asymetrie geometryczne do stworzenia porządku topologicznego w metamateriałach akustycznych. Fale dźwiękowe rozprzestrzeniały się wzdłuż ich krawędzi i brzegów. Jednak poważnym problemem był tutaj fakt, że mogły one rozprzestrzeniać się zarówno w przód jak i w tył. To zaś bardzo zaburzało odporność materiału na zakłócenia i ograniczało topologiczny porządek propagacji dźwięku. Zaburzenia w strukturze materiału mogły bowiem prowadzić do odbicia dźwięku.

Najnowsze badania pozwoliły na przezwyciężenie tych problemów. Ich autorzy wykazali, że do uzyskania porządku topologicznego można wykorzystać złamanie parzystości operacji odwrócenia czasu (parzystość T), a nie tylko asymetrii geometrycznych. Dzięki takiemu podejściu dźwięk rozprzestrzenia się tylko w jednym kierunku i jest bardzo odporny na wszelkie niedoskonałości materiału.

„To przełom na polu fizyki topologicznej. Uzyskaliśmy porządek topologiczny dzięki zmianom w czasie, co jest procesem zupełnie innym i dającym więcej korzyści niż cała topologiczna akustyka opierająca się na asymetriach geometrycznych” – mówi Andrea Alu. „Dotychczasowe metody wymagały istnienia kanału, który był wykorzystywany do odbijania dźwięku, co znacząco ograniczało ich właściwości topologiczne. Dzięki modulacjom czasowym możemy uniemożliwić powrót dźwięku i uzyskać silną ochronę topologiczną”.

Przełomy dokonano dzięki stworzeniu urządzenia składającego się z zestawu okrągłych piezoelektrycznych rezonatorów ułożonych w strukturę powtarzających się heksagonów. Całość przypominała plaster miodu. Całość podłączono do zewnętrznego obwodu, który dostarczał sygnał modulujący odpowiedzialny za złamanie parzystości T.

Co więcej, całość jest programowalna, co oznacza, że fale można wysłać wieloma różnymi drogami. Jak mówi Alu, wynalazek ten posłuży do udoskonalenia sonarów, układów elektronicznych wykorzystujących dźwięk czy urządzeń do obrazowania za pomocą ultradźwięków.

Ze szczegółami badań można zapoznać się na łamach „Science Advances”.

Autorstwo: Mariusz Błoński
Na podstawie: Phys.Org
Ilustracja: Geralt (CC0)
Źródło: KopalniaWiedzy.pl

1 Star2 Stars3 Stars4 Stars5 Stars Liczba głosów: 3, średnia ocena: 5,00 (max 5)
Loading...

TAGI: ,

Poznaj plan rządu!

OD ADMINISTRATORA PORTALU

Hej! Cieszę się, że odwiedziłeś naszą stronę! Naprawdę! Jeśli zależy Ci na dalszym rozpowszechnianiu niezależnych informacji, ujawnianiu tego co przemilczane, niewygodne lub ukrywane, możesz dołożyć swoją cegiełkę i wesprzeć "Wolne Media" finansowo. Darowizna jest też pewną formą „pozytywnej energii” – podziękowaniem za wiedzę, którą tutaj zdobywasz. Media obywatelskie, jak nasz portal, nie mają dochodów z prenumerat ani nie są sponsorowane przez bogate korporacje by realizowały ich ukryte cele. Musimy radzić sobie sami. Jak możesz pomóc? Dowiesz się TUTAJ. Z góry dziękuję za wsparcie i nieobojętność!

Poglądy wyrażane przez autorów i komentujących użytkowników są ich prywatnymi poglądami i nie muszą odzwierciedlać poglądów administracji "Wolnych Mediów". Jeżeli materiał narusza Twoje prawa autorskie, przeczytaj informacje dostępne tutaj, a następnie (jeśli wciąż tak uważasz) skontaktuj się z nami! Jeśli artykuł lub komentarz łamie prawo lub regulamin, powiadom nas o tym formularzem kontaktowym.

Dodaj komentarz

Chcesz skomentować? Zaloguj się!
  Subskrybuj  
Powiadom o